C-Flows on a Lie Group for Euler Equations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Hamiltonian Flows on Euler-type Equations

Properties of Hamiltonian symmetry flows on hyperbolic Euler-type equations are analyzed. Their Lagrangian densities are demonstrated to supply the Hamiltonian operators for subalgebras of their Noether symmetries, while substitutions between Euler-type equations define Miura transformations between the symmetry flows; some Miura maps for Liouvillean Euler-type systems are supplied by their int...

متن کامل

Approximation of a generalized Euler-Lagrange type additive mapping on Lie $C^{ast}$-algebras

Using fixed point method, we prove some new stability results for Lie $(alpha,beta,gamma)$-derivations and Lie $C^{ast}$-algebra homomorphisms on Lie $C^{ast}$-algebras associated with the Euler-Lagrange type additive functional equation begin{align*} sum^{n}_{j=1}f{bigg(-r_{j}x_{j}+sum_{1leq i leq n, ineq j}r_{i}x_{i}bigg)}+2sum^{n}_{i=1}r_{i}f(x_{i})=nf{bigg(sum^{n}_{i=1}r_{i}x_{i}bigg)} end{...

متن کامل

Euler-Lagrange equations and geometric mechanics on Lie groups with potential

Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...

متن کامل

Discrete Euler–Poincaré and Lie–Poisson equations

In this paper, discrete analogues of Euler–Poincaré and Lie–Poisson reduction theory are developed for systems on finite dimensional Lie groupsG with Lagrangians L : TG→ R that areG-invariant. These discrete equations provide ‘reduced’ numerical algorithms which manifestly preserve the symplectic structure. The manifold G×G is used as an approximation of TG, and a discrete Langragian L : G×G→ R...

متن کامل

Lie Point Symmetries and Commuting Flows for Equations on Lattices

Different symmetry formalisms for difference equations on lattices are reviewed and applied to perform symmetry reduction for both linear and nonlinear partial difference equations. Both Lie point symmetries and generalized symmetries are considered and applied to the discrete heat equation and to the integrable discrete time Toda lattice. Résumé Deux formalismes différents pour étudier les sym...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nagoya Mathematical Journal

سال: 1970

ISSN: 0027-7630,2152-6842

DOI: 10.1017/s0027763000013866