C-Flows on a Lie Group for Euler Equations
نویسندگان
چکیده
منابع مشابه
On Hamiltonian Flows on Euler-type Equations
Properties of Hamiltonian symmetry flows on hyperbolic Euler-type equations are analyzed. Their Lagrangian densities are demonstrated to supply the Hamiltonian operators for subalgebras of their Noether symmetries, while substitutions between Euler-type equations define Miura transformations between the symmetry flows; some Miura maps for Liouvillean Euler-type systems are supplied by their int...
متن کاملApproximation of a generalized Euler-Lagrange type additive mapping on Lie $C^{ast}$-algebras
Using fixed point method, we prove some new stability results for Lie $(alpha,beta,gamma)$-derivations and Lie $C^{ast}$-algebra homomorphisms on Lie $C^{ast}$-algebras associated with the Euler-Lagrange type additive functional equation begin{align*} sum^{n}_{j=1}f{bigg(-r_{j}x_{j}+sum_{1leq i leq n, ineq j}r_{i}x_{i}bigg)}+2sum^{n}_{i=1}r_{i}f(x_{i})=nf{bigg(sum^{n}_{i=1}r_{i}x_{i}bigg)} end{...
متن کاملEuler-Lagrange equations and geometric mechanics on Lie groups with potential
Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...
متن کاملDiscrete Euler–Poincaré and Lie–Poisson equations
In this paper, discrete analogues of Euler–Poincaré and Lie–Poisson reduction theory are developed for systems on finite dimensional Lie groupsG with Lagrangians L : TG→ R that areG-invariant. These discrete equations provide ‘reduced’ numerical algorithms which manifestly preserve the symplectic structure. The manifold G×G is used as an approximation of TG, and a discrete Langragian L : G×G→ R...
متن کاملLie Point Symmetries and Commuting Flows for Equations on Lattices
Different symmetry formalisms for difference equations on lattices are reviewed and applied to perform symmetry reduction for both linear and nonlinear partial difference equations. Both Lie point symmetries and generalized symmetries are considered and applied to the discrete heat equation and to the integrable discrete time Toda lattice. Résumé Deux formalismes différents pour étudier les sym...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nagoya Mathematical Journal
سال: 1970
ISSN: 0027-7630,2152-6842
DOI: 10.1017/s0027763000013866